Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(1): e0100523, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38112478

RESUMEN

Here, we present the complete genome sequence of Kineothrix sp. MB12-C1 (= BCRC 81406), isolated from the feces of black soldier fly (Hermetia illucens) larvae. The genome of strain MB12-C1 was chosen for further species classification and comparative genomic analysis.

2.
Front Microbiol ; 14: 1309806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116533

RESUMEN

Introduction: In recent years, researchers have been exploring the plastic-degrading abilities of bacteria residing in the guts of Styrofoam-eating Tenebrio molitor larvae. However, none of the reported strains have displayed highly efficient plastic degradation capabilities, and it's noteworthy that none of the existing studies have focused on strictly anaerobic microbes. Methods: In this study, we exclusively fed Styrofoam to T. molitor larvae and examined how this dietary change influence the gut's bacterial community composition, as observed through fecal bacteria using bacterial 16S rRNA gene amplicon sequencing and the small-scale culturomics method with 20 types of anaerobic media under four different conditions. Results: The results revealed a significant shift in the dominant phylogroup from Lactococcus (37.8%) to Escherichia-Shigella (54.7%) when comparing the feces of larvae fed with bran and Styrofoam, as analyzing through the bacterial 16S rRNA gene amplicon sequencing. For small-scale culturomics method, a total of 226 strains of anaerobic bacteria were isolated and purified using the rolling-tube/strictly anaerobic technique. Among them, 226 strains were classified into 3 phyla, 7 classes, 9 orders, 17 families, 29 genera, 42 known species and 34 potential novel species. Discussion: Interestingly, 24 genera in total, identified through the culturomics method, were not found in the results obtained from amplicon sequencing. Here, we present a collection of culturable anaerobic bacteria from the feces of T. molitor larvae, which might be a promising avenue for investigating the biodegradability of plastics by combining specific strains, either randomly or intentionally, while considering the abundance ratio of the microbial community composition.

3.
Microbiol Resour Announc ; 12(11): e0060823, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847038

RESUMEN

Here, we report the complete genome sequence of Proteiniborus sp. MB09-C3 (= BCRC 81405), isolated from the feces of black soldier fly (Hermetia illucens) larvae. The genome of strain MB09-C3 was selected for further species delineation and comparative genomic analysis.

4.
Microbiol Resour Announc ; 12(9): e0045023, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37534903

RESUMEN

Here, we report the complete genome sequence of Proteiniclasticum sp. QWL-01 (= BCRC 81396), isolated from sewage sludge of the Wastewater Treatment Plant of Sanming Steel Co. Ltd., Fujian, China. The genome of strain QWL-01 was selected for further species delineation and comparative genomic analysis.

5.
Microbiol Resour Announc ; 12(6): e0027723, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37154723

RESUMEN

We report the complete genome sequence of Tissierella sp. strain Yu-01 (=BCRC 81391), isolated from the feces of black soldier fly (Hermetia illucens) larvae. This fly has increasingly been gaining attention because of its usefulness for recycling organic waste. The genome of strain Yu-01 was selected for further species delineation.

6.
Microbiol Resour Announc ; 11(5): e0006822, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35481773

RESUMEN

The hydrogenotrophic strain Methanofollis formosanus DSM 15483T (= ML15T = OCM 798T) was isolated from an aquaculture fish pond near Wang-gong, Taiwan. The genome of strain DSM 15483T was selected for sequencing in order to provide further information about the species delineation and its unique habitat.

7.
Med Sci Monit ; 28: e935300, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288530

RESUMEN

BACKGROUND The recurrence of COVID-19 and the continuous escalation of prevention and control policies can lead to an increase in mental health problems. This study aimed to investigate the perceived stress, coping style, resilience, and social support among patients on maintenance hemodialysis (MHD) during the COVID-19 epidemic lockdown in China. MATERIAL AND METHODS This cross-sectional observational study enrolled 197 patients on MHD from the Guangdong Province Traditional Chinese Medical Hospital and the Hedong Hospital of Guangzhou Liwan District People's Hospital during July 2021. AMOS 24.0 and PROCESS Macro 3.1 model 6 were used for analyses of moderating mediating effects. RESULTS Perceived stress was negatively correlated with positive coping style (r=-0.305, P<0.001) and resilience (r=-0.258, P<0.001), whereas resilience (r=0.631, P<0.001) and social support (r=0.300, P<0.001) were positively correlated with positive coping style among patients on MHD. In the moderated mediating model, perceived stress had significant direct predictive effects on positive coping style (95% CI -0.33, -0.07), and perceived stress had significant indirect predictive effects on positive coping styles through resilience (95% CI -0.26, -0.06) or social support (95% CI 0.01, 0.06). Perceived stress had significant indirect predictive effects on positive coping style through both resilience and social support (95% CI -0.04, -0.01). CONCLUSIONS Perceived stress not only predicted coping style directly, but also indirectly predicted coping style through resilience and social support. Coping style was affected by internal and external factors during the COVID-19 pandemic lockdown period.


Asunto(s)
Adaptación Psicológica/fisiología , COVID-19/psicología , Enfermedades Renales/psicología , Adulto , Pueblo Asiatico/psicología , COVID-19/complicaciones , China/epidemiología , Control de Enfermedades Transmisibles , Estudios Transversales , Femenino , Humanos , Enfermedades Renales/complicaciones , Enfermedades Renales/virología , Masculino , Persona de Mediana Edad , Pandemias , Diálisis Renal , Resiliencia Psicológica/fisiología , SARS-CoV-2/patogenicidad , Apoyo Social , Estrés Psicológico/psicología , Encuestas y Cuestionarios
8.
Front Genet ; 11: 809, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849809

RESUMEN

High-altitude acclimatization is a representative example of vertebrates' acclimatization to harsh and extreme environments. Previous studies reported sufficient evidence for a molecular genetic basis of high-altitude acclimatization, and genomic patterns of genetic variation among populations and species have been widely elucidated in recent years. However, understanding of the miRNA role in high-altitude acclimatization have lagged behind, especially in non-model species. To investigate miRNA expression alterations of goats that were induced by high-altitude stress, we performed comparative miRNA transcriptome analysis on six hypoxia-sensitive tissues (heart, kidney, liver, lung, skeletal muscle, and spleen) in two goat populations from distinct altitudes (600 and 3000 m). We obtained the expression value of 1391 mature miRNAs and identified 138 differentially expressed (DE) miRNAs between high and low altitudes. Combined with tissue specificity analysis, we illustrated alterations of expression levels among altitudes and tissues, and found that there were coexisting tissue-specific and -conserved mechanisms for hypoxia acclimatization. Notably, the interplay between DE miRNA and DE target genes strongly indicated post-transcriptional regulation in the hypoxia inducible factor 1, insulin, and p53 signaling pathways, which might play significant roles in high-altitude acclimatization in domestic goats. It's also worth noting that we experimentally confirmed miR-106a-5p to have a negative regulation effect on angiogenesis by directly targeting FLT-1. These results provide insight into the complicated miRNA expression patterns and regulatory mechanisms of high-altitude acclimatization in domestic goats.

9.
Int J Mol Sci ; 20(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100777

RESUMEN

Acute myocardial infarction (AMI) is an ischemic heart disease with high mortality worldwide. AMI triggers a hypoxic microenvironment and induces extensive myocardial injury, including autophagy and apoptosis. MiRNAs, which are a class of posttranscriptional regulators, have been shown to be involved in the development of ischemic heart diseases. We have previously reported that hypoxia significantly alters the miRNA transcriptome in rat cardiomyoblast cells (H9c2), including miR-27a-5p. In the present study, we further investigated the potential function of miR-27a-5p in the cardiomyocyte response to hypoxia, and showed that miR-27a-5p expression was downregulated in the H9c2 cells at different hypoxia-exposed timepoints and the myocardium of a rat AMI model. Follow-up experiments revealed that miR-27a-5p attenuated hypoxia-induced cardiomyocyte injury by regulating autophagy and apoptosis via Atg7, which partly elucidated the anti-hypoxic injury effects of miR-27a-5p. Taken together, this study shows that miR-27a-5p has a cardioprotective effect on hypoxia-induced H9c2 cell injury, suggesting it may be a novel target for the treatment of hypoxia-related heart diseases.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/antagonistas & inhibidores , Hipoxia/metabolismo , MicroARNs/metabolismo , MicroARNs/farmacología , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Apoptosis , Autofagia , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación de la Expresión Génica , Lesiones Cardíacas , Masculino , Miocardio/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley
10.
Analyst ; 144(9): 2914-2921, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30912775

RESUMEN

Nanoskiving, benefiting from its simple operation and high reproducibility, is a promising method to fabricate nanometer-size electrodes. In this work, we report the fabrication of Au nanowire electrodes with different shapes and well-controlled sizes through nanoskiving. Au nanowire block electrodes, membrane electrodes and tip electrodes are prepared with good reproducibility. Steady-state cyclic voltammograms (CVs) demonstrate that all these electrodes behave well as nanoband ultramicroelectrodes. A fast heterogeneous electron transfer rate constant can be extracted reliably from steady-state CVs at various size Au nanowire block electrodes by the Koutecký-Levich (K-L) method. The Au nanowire membrane electrodes demonstrate good sensitivity toward the oxidation of catecholamine and could monitor catecholamine released from rat adrenal chromaffin cells stimulated by high K+.

11.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235878

RESUMEN

Guanidinoacetic acid (GAA), an amino acid derivative that is endogenous to animal tissues including muscle and nerve, has been reported to enhance muscular performance. MicroRNA (miRNA) is a post-transcriptional regulator that plays a key role in nutrient-mediated myogenesis. However, the effects of GAA on myogenic differentiation and skeletal muscle growth, and the potential regulatory mechanisms of miRNA in these processes have not been elucidated. In this study, we investigated the effects of GAA on proliferation, differentiation, and growth in C2C12 cells and mice. The results showed that GAA markedly inhibited the proliferation of myoblasts, along with the down-regulation of cyclin D1 (CCND1) and cyclin dependent kinase 4 (CDK4) mRNA expression, and the upregulation of cyclin dependent kinase inhibitor 1A (P21) mRNA expression. We also demonstrated that GAA treatment stimulated myogenic differentiation 1 (MyoD) and myogenin (MyoG) mRNA expression, resulting in an increase in the myotube fusion rate. Meanwhile, GAA supplementation promoted myotube growth through increase in total myosin heavy chain (MyHC) protein level, myotubes thickness and gastrocnemius muscle cross-sectional area. Furthermore, small RNA sequencing revealed that a total of eight miRNAs, including miR-133a-3p and miR-1a-3p cluster, showed differential expression after GAA supplementation. To further study the function of miR-133a-3p and miR-1a-3p in GAA-induced skeletal muscle growth, we transfected miR-133a-3p and miR-1a-3p mimics into myotube, which also induced muscle growth. Through bioinformatics and a dual-luciferase reporter system, the target genes of miR-133a-3p and miR-1a-3p were determined. These two miRNAs were shown to modulate the Akt/mTOR/S6K signaling pathway by restraining target gene expression. Taken together, these findings suggest that GAA supplementation can promote myoblast differentiation and skeletal muscle growth through miR-133a-3p- and miR-1a-3p-induced activation of the AKT/mTOR/S6K signaling pathway.


Asunto(s)
Glicina/análogos & derivados , MicroARNs/genética , Desarrollo de Músculos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Glicina/farmacología , Masculino , Ratones , MicroARNs/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/genética
12.
Int J Mol Sci ; 19(4)2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670053

RESUMEN

Recent evidence suggests that testosterone deficiency can dramatically decrease the quality of sperm. MicroRNAs (miRNAs) are conserved mediators of post-transcriptional gene regulation in eukaryotes. However, the systemic regulation and function of miRNAs in sperm quality decline induced by testosterone deficiency has not been investigated. Here, we found that the sperm apoptosis was significantly enhanced and the sperm motility was dramatically decreased in hemicastrated pigs. We then used small RNA sequencing to detect miRNA profiles of sperm from pigs with prepubertal hemicastration (HC) and compared them with control libraries. We identified 16 differentially expressed (DE) miRNAs between the sperm of prepubertal HC and control (CT) pigs. Functional enrichment analysis indicated that the target genes of these DE miRNAs were mainly enriched in apoptosis-related pathways including the p53, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. Furthermore, gain- and loss-of-function analyses demonstrated potential anti-apoptotic effects of the DE miRNAs miR-26a-5p and let-7g-5p on sperm cells. The luciferase reporter assay confirmed that PTEN and PMAIP1 are targets of miR-26a-5p and let-7g-5p, respectively. Spearman’s correlation analysis revealed significantly positive correlations between the sperm and its corresponding seminal plasma exosomes regarding the miRNA expression levels. In conclusion, testosterone deficiency-induced changes in the miRNA components of seminal plasma exosomes secreted by the genital tract may partially elucidate sperm miRNAome alterations, which are further responsible for the decline of sperm motility.


Asunto(s)
Apoptosis/genética , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Espermatozoides/citología , Espermatozoides/metabolismo , Testosterona/farmacología , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Castración , Supervivencia Celular/efectos de los fármacos , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , MicroARNs/genética , Modelos Animales , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Semen/metabolismo , Análisis de Secuencia de ARN , Espermatozoides/efectos de los fármacos , Sus scrofa , Testosterona/deficiencia
13.
Anim Sci J ; 89(6): 848-857, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29536589

RESUMEN

Animal domestication is a long-term, multistage process that results in modifications of many traits, especially the less aggressive behavior in domesticated animals. In this study, we used the Illumina RNA-seq to compare the transcriptome in brain frontal cortex between wild boar and Rongchang pig, a typical indigenous domestic pig in China, and revealed that 604 genes and 639 genes were specifically detected in wild boar and domesticated pig, respectively, with distinct functional characteristics that may be related to their respective environment. In addition, we identified 60 differentially expressed genes showing an enrichment in immune response-related function. Further comparison of the results against previous studies identified seven genes that are associated with domestication. Our results provide insights for deciphering the mechanism of pig domestication in the future.


Asunto(s)
Agresión , Animales Domésticos/genética , Conducta Animal , Domesticación , Sus scrofa/genética , Sus scrofa/psicología , Porcinos/genética , Porcinos/psicología , Transcriptoma/genética , Animales , Femenino , Lóbulo Frontal , Masculino , ARN , Secuenciación del Exoma
14.
Int J Mol Sci ; 18(4)2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350318

RESUMEN

Recent evidence suggests that hypoxia caused by acute myocardial infarction can induce cardiomyocyte apoptosis. Exosomes are signalling mediators that contribute to intercellular communication by transporting cytosolic components including miRNAs, mRNAs, and proteins. However, the systemic regulation and function of exosomal miRNAs in hypoxic cardiomyocytes are currently not well understood. Here, we used small RNA sequencing to investigate the effects of hypoxia stress on miRNAome of rat cardiomyoblast cells (H9c2) and corresponding exosomes. We identified 92 and 62 miRNAs in cells and exosomes, respectively, that were differentially expressed between hypoxia and normoxia. Hypoxia strongly modulated expression of hypoxia-associated miRNAs in H9c2 cells, and altered the miRNAome of H9c2 cells-derived exosomes. Functional enrichment analysis revealed extensive roles of differentially expressed exosomal miRNAs in the HIF-1 signalling pathway and in apoptosis-related pathways including the TNF, MAPK, and mTOR pathways. Furthermore, gain- and loss-of-function analysis demonstrated potential anti-apoptotic effects of the hypoxia-induced exosomal miRNAs, including miR-21-5p, miR-378-3p, miR-152-3p, and let-7i-5p; luciferase reporter assay confirmed that Atg12 and Faslg are targets of miR-152-3p and let-7i-5p, respectively. To summarize, this study revealed that hypoxia-induced exosomes derived from H9c2 cells loaded cardioprotective miRNAs, which mitigate hypoxia-induced H9c2 cells apoptosis.


Asunto(s)
Exosomas/genética , MicroARNs/genética , Mioblastos Cardíacos/citología , Análisis de Secuencia de ARN/métodos , Animales , Apoptosis , Hipoxia de la Célula , Línea Celular , Regulación de la Expresión Génica , Factor 1 Inducible por Hipoxia/genética , Ratas , Transducción de Señal
15.
Anal Chem ; 88(15): 7769-76, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27385361

RESUMEN

In vivo monitoring of hydrogen peroxide (H2O2) in the brain is of importance for understanding the function of both reactive oxygen species (ROS) and signal transmission. Producing a robust microelectrode for in vivo measurement of H2O2 is challenging due to the complex brain environment and the instability of electrocatalysts employed for the reduction of H2O2. Here, we develop a new kind of microelectrode for in vivo monitoring of H2O2, which is prepared by, first, electrodeposition of Prussian blue (PB) onto carbon nanotube (CNT) assembled carbon fiber microelectrodes (CFEs) and then overcoating of the CFEs with a thin membrane of polydopamine (PDA) through self-polymerization. Scanning electron microscopic and X-ray proton spectroscopic results confirm the formation of PDA/PB/CNT/CFEs. The PDA membrane enables PB-based electrodes to show high stability in both in vitro and in vivo studies and to stably catalyze the electrochemical reduction of H2O2. The microelectrode is selective for in vivo measurements of H2O2, interference-free from O2 and other electroactive species coexisting in the brain. These properties, along with good linearity, high biocompatibility, and stability toward H2O2, substantially enable the microelectrode to track H2O2 changes in vivo during electrical stimulation and microinfusion of H2O2 and drug, which demonstrates that the microelectrode could be well suited for in vivo monitoring of dynamic changes of H2O2 in rat brain.

16.
Anal Chem ; 88(2): 1117-22, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26653179

RESUMEN

Nanoscaled electrode has been attracting increasing attention because of striking fundamentals and practical applications. Usually, the nanoscaled electrode is fabricated by manual or photo or electron-beam lithography, which is not easy to reproducibly fabricate with simple equipment. In this paper, a cost-effective method, nanoskiving, is developed to fabricate an ultralong nanowire electrode (ULNE). The ULNE is reproducibly obtained by simply sectioning a sandwich epoxy block with a Au film. The width of ULNE could be down to nanometer dependence on the thickness of the Au film, while the length could reach to the millimeter. Thus, the created Au ULNE shows steady-state microamperometric current, characteristic of the nanoelectrode array attributed to its macroscopic length and nanoscaled width without considering the overlap of the diffusion layer of the neighboring nanoelectrode. The electrodeposited Pt/Au ULNE displays unusual electrocatalytic performance toward both the oxidation and reduction of hydrogen peroxide and, as a nanosensor, gives rise to high sensitivity and selectivity of monitoring hydrogen peroxide released from cells stimulated by ascorbic acid.


Asunto(s)
Adenocarcinoma/metabolismo , Técnicas Electroquímicas , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Nanotecnología , Adenocarcinoma/patología , Ácido Ascórbico/farmacología , Electrodos , Oro/química , Humanos , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...